Solenoid Horn to Produce a Multiband Beam for Neutrino Oscillation Studies

K.T. McDonald Princeton U.

UCLA, December 5, 2003

http://puhep1.princeton.edu/nufact/physics/0312022

LANNDD
Liquid Argon Neutring and Nucleon Decay Detector

F. Sergiampietri-August 2000

1- TOP END CAP IRON YOKE 2- BOTTOM END CAP IRON YOKE

A "Conventional" Neutrino Horn

If desire secondary pions with $E_{\pi} \lesssim 0.5$ GeV (neutrino factories), a high-Z target is favored, but for $E_{\pi} \gtrsim 1$ Gev ("conventional" neutrino beams), low Z is preferred.

A conventional neutrino horn works better with a point target (high-Z).

Small horn ID is desirable \Rightarrow challenge to provide target cooling for high beam intensity.

Aggressive design: carbon-carbon target with He gas cooling may be viable at 2 MW:

A Solenoidal Targetry System for a Superbeam

- A precursor to a Neutrino Factory is a Neutrino Superbeam based on decay of pions from a multimegawatt proton target station.
- 4 MW proton beams are achieved in both the BNL and FNAL (and CERN) scenarios via high rep rates: $\approx 10^6/\text{day}$.
- Classic neutrino horns based on high currents in conductors that intercept much of the secondary pions may have lifetimes of only a few days in this environment.
- Consider instead a solenoid "horn" with conductors at larger radii than the pions of interest similar to the Neutrino Factory capture solenoid.
- Pions produced on axis inside the solenoid have zero (canonical) angular mometum, $L_z = r(P_{\phi} + eA_{\phi}/c) = 0$, $\Rightarrow P_{\phi} = 0$ on exiting the solenoid.
- If the pion has made exactly 1/2 turn (or an odd number of half turns) on its helix when it reaches the end of the solenoid, then its initial P_r has been rotated into a pure P_{ϕ} , $\Rightarrow P_{\perp} = 0$ on exiting the solenoid,
 - \Rightarrow Point-to-parallel focusing.

Narrowband Beam via Solenoid Focusing

- The point-to-parallel focusing occurs for $P_{\pi} = eBd/(2n+1)\pi c$.
- > Narrowbeam neutrino beam with peaks at

$$E_{\nu} \approx \frac{4}{9} \frac{eBd}{(2n+1)2\pi c} \,.$$

 $\bullet \Rightarrow$ Can study several neutrino oscillation peaks at once, at

$$\frac{1.27M_{23}^{2}[\text{eV}^{2}] L[\text{km}]}{E_{\nu}[\text{GeV}]} = \frac{(2n+1)\pi}{2}.$$

- Get both ν and $\bar{\nu}$ at the same time (while ν_e and $\bar{\nu}_e$ suppressed),
 - \Rightarrow Must use detector that can identify sign of μ and e,
 - \Rightarrow Magnetized liquid argon TPC.

Can Study CP Violation at L/E = (2n + 1)500 km/GeV

[Marciano, hep-ph/0108181, Diwan et al., hep-ph/0303081]

The *n*th maximum of ν_2 - ν_3 oscillations occurs at $L/E \approx (2n+1)400$ km/GeV.

The CP asymmetry grows with distance:

$$A = \frac{P(\nu_{\mu} \to \nu_{e}) - P(\bar{\nu}_{\mu} \to \bar{\nu}_{e})}{P(\nu_{\mu} \to \nu_{e}) + P(\bar{\nu}_{\mu} \to \bar{\nu}_{e})} \approx \frac{2s_{12}c_{12}c_{23}\sin\delta}{s_{23}s_{13}} \left(\frac{\Delta m_{12}^{2}}{\Delta m_{23}^{2}}\right) \frac{\Delta m_{23}^{2}L}{4E_{\nu}}$$

$$\Rightarrow \frac{\delta A}{A} \approx \frac{1}{A\sqrt{N}} \propto \frac{E_{\nu}}{L\sqrt{N}} \approx \text{ independent of } L \text{ at fixed } E_{\nu}.$$

 $N_{\rm events} \propto 1/L^2$,

 \Rightarrow Hard to make other measurements at large L.

Low E_{ν} favorable for CP violation measurements.

If (still) need to disentangle matter effects from CP asymmetries, use the n = 0 and 1 oscillation maxima with E_1 as low as possible,

Ex: FNAL-Kenosha (986 km), BNL-FNAL (1286 km).

LANNDD = A Magnetized Liquid Argon Detector Concept Still a Good Idea!

Muons: Easy to tell sign even if B = 0.1 T

Electrons: Can tell sign to 4 σ for E = 2.5 GeV in B = 0.5 T

